Note

N.m.r. (1H and 13C) studies of some carbohydrate acetates

ELIZABETH LEE, JOHN O'CALLAGHAN, AND JOHN P. O'REILLY

Department of Chemistry, University College, Galway (Ireland)

(Received October 27th, 1981; accepted for publication, December 1st, 1981)

In recent 13 C-n.m.r. studies of D-gluco- 1 and L-rhamno-pyranose 2 acetates, signals were assigned by decoupling techniques and by reference to published data. The assignments were in some cases interchangeable. We now report on the assignment of the 13 C-n.m.r. spectra of benzyl 3 (1) and methyl 4 (6) tetra-O-acetyl- β -D-galactopyranosides, methyl tetra-O-acetyl- β -D-glucopyranoside 4 (7), penta-O-acetyl- β -D-glucopyranoside (8), and the 2,4,6-(3) and 2,3,6-tri-acetates (4) of benzyl β -D-galactopyranoside 3 . N.m.r. line-shifts (1 H and 13 C) induced by Eu(fod) $_3$ were used in some cases for complete assignment of signals. Chemical-shift displacements of the 13 C-lines of the ring-carbon atoms on acetylation of 3, 4, 5, and 8, and on change of configuration at C-4 of 1, 2, 3, 5, and 6, are discussed.

¹³C-N.m.r. chemical shifts for the acetates 1–8 are given in Table I, together with data for benzyl tetra-O-acetyl-β-D-glucopyranoside⁷ (9), and penta-O-acetyl-(10) and 1,2,3,6-tetra-O-acetyl-β-D-glucopyranose¹ (11). The ¹³C-n.m.r. spectra of 1, 2, 4, and 5 were assigned by selective ¹H-spin-decoupling and off-resonance experiments. ¹³C-Europium-shift data and selective ¹H-decoupling allowed complete assignment of the resonances in the spectra of 3, 6, and 8. On addition of Eu(fod)₃ to a CDCl₃ solution of 7, the ¹H-n.m.r. spectrum was poorly resolved. The complete assignment of the ¹³C spectrum was obtained by using Pr(fod)₃ and selective ¹H-decoupling.

For example, the signals for the carbon atoms of the pyranoid ring and the methylene-carbon atom of the benzyl group in the ¹³C-n.m.r. spectrum of 3 occurred between 100 and 62 p.p.m. The signal for C-l appeared at lowest field (99.6 p.p.m.), and the high-field signal (62 p.p.m.) for C-6 was assigned from the decoupled off-resonance spectrum and selective irradiation of the H-6 signals. However, the C-3, C-4, and C-5 signals were close together, and there was partial overlap of the H-3 and H-5 signals in the ¹H spectrum (60 MHz). Incremental additions of Eu(fod)₃ resolved the H-3 and H-5 signals and allowed the resonances due to C-3, C-4, and C-5 to be assigned by spin-decoupling experiments. Extrapolation to zero concentration of europium gave the ¹³C chemical-shift values listed in Table I.

TABLE I

13C-N.M.R. CHEMICAL-SHIFT DATA (P.P.M. DOWFIELD FROM Me4Si)

Compound	C-1	C-2	C-3	C-4	C-5	С-б	$PhCH_2$	CH_3O
1	99.8	68.9	70.8	67.1	70.8	61.3	70.8	_
2	92.2	67.9	70.9	66.9	71.7	61.1	_	
3	99.6	72.9	71.6	69.8	71.1	62.0	70.8	—
4	99.7	69.2	73.2	67.2	72.1	62.2	70.5	_
5	92.2	68.2	73.0	66.9	73.0	62.1		_
6	102.1	68.9	71.0	67.1	70.7	61.3		57.0
7	101.6	71.2	72.9	68.5	71.7	61.9		56.9
8	99.3	74.2	73.8	71.1	71.9	62.2	70.6	
9	99.3	71.4	72.9	68.6	71.9	62.1	70.8	_
10	91.8	70.5	72.9	68.0	72 . 9	61.6		_
11	91.9	70.5	75.2	68.5	75.0	62.7		_

It can be seen (Table I) that acetylation of the galacto acetates 3 and 4 to give 1, and of 5 to give 2, caused a 1.3 ($\Delta\delta$ for C-5 in 4 compared to 1) \rightarrow 4 p.p.m. ($\Delta\delta$ for C-2 in 3 compared to 1) upfield shift in the resonances for β -carbon atoms, and slight shielding [ranging from 0.0 ($\Delta\delta$ for C-4 in 5 compared to 2) to 0.8 p.p.m. ($\Delta\delta$ for C-3 in 3 compared to 1) for the α -carbon atoms. A similar trend in chemical shifts was observed on peracetylation of the HO-3-free acetate 8. There was an upfield shift ($\sim 7.6 \rightarrow 10$ p.p.m.) in the signal of the acetoxyl-bearing carbon (C-1) of 2 and 5 relative to the C-1 signals of 1, 3, 4, 6, 7, and 8, as expected¹. Similar trends in the displacement of the 13C lines of the ring-carbon atoms have been observed for some p-gluco- 1 and L-rhamno-pyranose 2 acetates. Comparison of the 13 C-n.m.r. data for 1 and 6 indicated that, apart from the expected2 downfield shift for the C-1 signal, replacement of the C-1 benzyloxy group by a methoxyl group had little or no effect on the chemical shifts of the remaining ring-carbon atoms. The acetoxyl substituent at C-1 in the peracetate 2 had a significant effect upon the chemical shifts of C-2 (upfield by 1.0 p.p.m.) and C-5 (downfield by ~ 1.0 p.p.m.) compared to 1 or 6. Replacement of the benzyl substituent at C-1 in the HO-4 free triacetate 4 by an acetoxyl group, to give the tetra-acetate 5, had a similar effect on the C-2 and C-5 shifts both in direction and magnitude.

Changes in chemical shift values brought about by inversion of configuration at C-4 can be seen by comparison of the data for the epimeric pairs 1 and 9, 2 and 10, 3 and 8, and 6 and 7. For 1, 2, 3, and 6, the signal for the axial acetoxyl-bearing carbon (C-4) undergoes a notable upfield-shift $(1.1\rightarrow1.5 \text{ p.p.m.})$, together with similar shifts $(0.8\rightarrow2.6 \text{ p.p.m.})$ for the adjacent carbon atoms (C-3 and C-5) and for the γ -carbons (C-2), a small downfield-shift $(0.3\rightarrow0.5 \text{ p.p.m.})$ for C-1, and slight shielding $(0.2\rightarrow0.8 \text{ p.p.m.})$ of the exocyclic carbon (C-6). Comparison of the direction and magnitude of the shifts for the acetates 5 and 11¹, in which HO-4 is unsubstituted, gave corresponding results.

268 NOTE

TABLE II

OBSERVED, RELATIVE SHIFT-GRADIENTS a,b (1 H) FOR COMPOUNDS 1, 3, 4, 8, AND 9

Compound	H-I	H-2	Н-3	H-4	H-5	Н-6	H-6'	Ph-CH ₂	ОН	O-Acetyl			
1	3.3	7.6	7.3	10	4.8	7.0	7.0	1.8	_	3.9	3.2	3.8	2.3
3	2.1	5.7	5.2	10	2.2	4.4	3.5	1.0	17.8	5.0	0.7	0.0	
4	2.7	10	5.9	6.1	4.6	6.2	6.2	1.7	16.1	3.2	2.4	2.4	
8	3.8	10	5.8	8.3	3.6	4.7	4.7	1.1	17.7	2.1	2.1	1.6	
9	4.6	9.8	10	9.8	4.6	9.6	9.6	2.3	-	8.0	4.5	3.2	3.7

^aP.p.m. per mol of Eu(fod)₃ per mol of substrate. ^bAll shifts for a given compound are normalised to the hydrogen(s) which exhibit the greatest induced shift.

Examination of $Eu(fod)_3$ -induced shifts. — The relative shift gradients, derived from the experimental plots of induced shift vs. molar ratio of shift reagent to substrate, are given in Table II. Comparison of the induced-shift values for the benzyl β -D-galacto- and β -D-gluco-pyranoside tetra-acetates (1 and 9) with those reported for the corresponding methyl glycosides indicates a degree of competitive binding with the shift reagent between the acetoxyl groups. Moreover, the expectedly large shift-values for the hydroxyl signals for the 2,3,6- and 2,4,6-triacetates (4 and 8) are accompanied by a significant range of shift values for the acetoxyl signals. Furthermore, the marked shift-value for one of the three acetoxyl signals relative to the other two signals for triacetate 3, together with the large value for HO-3, may indicate that chelation of the shift reagent involves HO-3 and, most probably, AcO-4.

EXPERIMENTAL

 1 H-N.m.r. spectra (100 MHz) were recorded with a Jeol MH-100 spectrometer, and 1 H- and 13 C-n.m.r. spectra (59.75 and 15.03 MHz, respectively) were recorded with a Jeol FX-60 spectrometer. Chemical shifts are in δ units (1 H) and p.p.m. downfield from Me₄Si (13 C).

REFERENCES

- 1 H. KOMURA, A. MATSUNO, Y. ISHIDO, K. KUSHIDA, AND K. AOKI, Carbohydr. Res., 65 (1978) 271-277.
- 2 V. Pozsgay and A. Neszmélyi, Carbohydr. Res., 80 (1980) 196-202.
- 3 E. E. LEE, A. BRUZZI, E. O'BRIEN, AND P. S. O'COLLA, Carbohydr. Res., 35 (1974) 103-109.
- 4 K. IZUMI, J. Biochem. (Tokyo), 76 (1974) 535-544.
- 5 J. S. BRIMACOMBE, A. B. FOSTER, R. HEMS, J. H. WESTWOOD, AND L. D. HALL, Can. J. Chem., 48 (1970) 3946-3952; K. IZUMI, J. Biochem. (Tokyo), 81 (1977) 1605-1611.
- 6 H. Libert, I. Schuster, and L. Schmid, Chem. Ber., 101 (1968) 1902-1909.
- 7 E. E. LEE AND J. O. WOOD, Carbohydr. Res., 75 (1979) 317-321.